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Frequency Shift of Spectral Lines Generated by
Multiple Dynamic Scattering
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The frequency shift of spectral lines generated by single dynamic scattering is
known from Wolf ’ s pioneering work. The multiple scattering effect is discussed
and for the case of redshift two main results are shown: (1) the multiple scattering
effect causes a larger shift than does single scattering, and (2) m scatterings with
scattering angle u /m each produce a larger shift than that done by n scatterings
with scattering angle u /n each if m . n. These results might be of particular
interest in connection with the observed spectra of quasars.

1. INTRODUCTION

In the last decade some closely related processes have been discovered

that can generate frequency shifts of spectral lines (Wolf, 1986, 1987; Morris
and Faklis, 1987; Wolf and Foley, 1989; Wolf et al., 1989; Wolf and James,

1990). One of them is scattering through random media, the study of which

has been enriched greatly with the techniques of statistical optics (Wolf and

Born 1980; Goodman, 1985). In scattering processes the spectral changes

are induced by correlations between fluctuating response functions of the

scattering medium; e.g., its dielectric susceptibility either at different points
in the scatterer, when the frequency-dependent macroscopic response is time

independent, or at different space-time points, when it is time dependent. In

all these cases the changes in the spectrum are consequences of the correlations

involving an appropriate variable characterizing the source, the field, or

the response of a scatterer. With appropriate correlations the changes are

manifested as frequency shifts of spectral lines. Scattering of polychromatic
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light by a medium whose dielectric susceptibility is a random function of

position and time produces a frequency shift in its spectrum. This was first

shown by Wolf (Wolf and Foley, 1989; Wolf et al., 1989; Wolf and James,
1990). He has established that if the spectrum of the incident light consists

of a single line of Gaussian profile and the correlation function of the dielectric

susceptibility is also a Gaussian function, the spectrum of the scattered field

will consist of a line that has approximately a Gaussian profile. However,

this line is shifted toward shorter or longer wavelength, depending on the

angle of scattering. For almost zero scattering angle, i.e., at about 10 2 12 rad,
the redshift obtained from the single scattering effect is negligible, but it

contributes considerably in the case of multiple scattering. Light comes to

us from distant sources traveling several thousand light-years and therefore

the number of scatterings on the way is expected to be large enough to produce

such a redshift. This mechanism claims more accuracy in the measurment of

the distance of a light source which has been overestimated by the present-
day theory.

2. SCATTERING THEORY AND WOLF MECHANISM

We begin by describing briefly the main results given by Wolf and

James (1990) with a little generalization by taking polychromatic instead of

monochromat ic light. Suppose that a polychromatic field of central frequency

v 0 is incident in the direction specified by the unit vector uÃ5 (ux , uy , uz)
on a scattering medium. The incident spectrum then has the form

SU( v ) 5 A0 exp F 2
1

2 d 2
0

( v 2 v 0)2 G (1)

The spectrum of the scattered radiation at a point ruÃ8 in the far zone produced

when a linearly polarized polychromatic plane electromagnetic wave is inci-

dent on such a medium was shown to be given by the formula (Wolf and

Foley, 1989), valid within the first-order Born approximation (Wolf and Born,
1998, Goodman, 1985)

S ( ` )( v 8) 5 A84 #
`

2 `

_( v 8, v )SU ( v ) d v (2)

Here A 5 (2 p )3 V (sin2 c )/c 4 r 2, c being the angle between the electric vector

of the incident field and uÃ8 5 (u 8x, u 8y, u 8z is the unit vector in the direction

of scattering; V is the volume of the scatterer, c is the speed of light, _ is

the scattering kernel defined as (Wolf and Foley, 1989)
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_( v 8, v ) 5 GÅ 1 v 8uÃ8 2 v uÃ

c
, v 8 2 v ; v 2 (3)

where
-

G (
-

K , V , v ) is the four-dimensional Fourier transform of the correla-

tion function

G (
-

R , T; v ) 5 ^ h *(
-
r 1

-
R , t 1 T; v ) h (

-
r , t; v ) & (4)

of the generalized dielectric susceptibility h (
-
r , t; v ) of the scattering medium.

Now we study a particular case supposing that the correlation properties of

the fluctuating medium are characterized by an anisotropic Gaussian func-
tion, viz.,

G (
-

R , T; v ) 5 G0 exp F 2
1

2 1 X 2

s 2
x

1
Y 2

s 2
y

1
Z 2

s 2
z

1
c 2T 2

s 2
t 2 G (5)

Here (X, Y, Z ) are components of the vector
-

R with respect to a suitably

chosen Cartesian referrence frame; s x , s y , s z , s t are correlation lengths and

G0 is a positive constant. The Fourier transform of G (R, T; v ) is given by

-
G (

-
K , V ; v ) 5

1

(2 p )4 # V

d 3 R #
`

2 `

dT G(
-

R , T; v ) exp[ 2 i (
-

K ?
-

R 2 V T )]

5 B exp F 2
1

2 1 s 2
xK

2
x 1 s 2

yK
2
y 1 s 2

z K 2
z 1

s 2
t V 2

c 2 2 G (6)

where

B 5
G0 s z s x s z s t

c (2 p )2

and
-

K 5 (Kx , Ky , Kz) with the same reference frame as that of
-

R . Using (3),

we get

_( v 8, v ) 5 B exp F 2
1

2
( a 8 v 82 2 2 b v v 8 1 a v 2) G (7)

where
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s 2

x

c 2 u 2
x 1
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b 5
s 2

x

c 2 uxu 8x 1
s 2

y

c 2 uyu 8y 1
s 2

z

c 2 uzu 8z 1
s 2

t

c 2

According to Schwarz’ s inequality

a a 8 $ b 2

The equality applies only when uÃ| uÃ8.
Performing a straightforward calculation, we obtain from equations (2)

and (7),

S ( ` ) ( v 8) 5 A8 exp F 2
1

2 d 82
0

( v 8 2 v 0)
2 G (9)

where

v 0 5
| b | v 0

a 8 1 d 82
0 ( a a 8 2 b 2)

d 82
0 5

a d 2
0 1 1

a 8 1 d 2
0 ( a a 8 2 b 2)

(10)

A8 5 ! p

2( a d 82
0 1 1)

ABA0 v 84
0 d 0 exp F | b | v 0 v 0 2 a v 2

0

2( a d 2
0 1 1) G

To a good approximation (Wolf and James, 1990), we can replace v 8 in A8
by v 0 defined in (10), so that we can consider A8 as a constant. Thus equation
(9) suggests that S( ` ) ( v 8) also has the form of a spectral line of Gaussian

profile, with central frequency v 0. The relative frequency shift is defined to

be a z-number by the relation

z 5
v 0 2 v 0

v 0

where v 0 and v 0 denote the unshifted and shifted frequency, respectively. In

the above case

z 5
a 8 1 d 82

0 ( a a 8 2 b 2)

| b |
2 1

Thus we see that the relative frequency shift z induced by this mechanism

is independent of frequency and can take values in the range z . 2 1 even

though the source, the medium, and the observer are at rest with respect to

one another. It is therefore necessary to consider these effects, which can

make a large contribution to the redshift of the observed spectra. Thus this



Frequency Shift of Spectral Lines by Multiple Scattering 1473

mechanism of a redshift without considering a Doppler origin might play a

significant role in testing cosmological models.

3. MULTIPLE SCATTERING THEORY

As we saw in the previous section, the light from a distant source is

deflected on its way by a scatterer. Now the question is how these scatterers

are placed in the interstellar medium. There are three different cases: (1) a

continuum, (2) a stratified medium, or (3) a medium with a discrete distribu-
tion of scatterers. Here we consider the last case, i.e., we assume that there

are a large number of scattering volumes in the interstellar medium, distributed

in a random manner. A light ray, while passing through this medium, is

scattered by some of the scatterers. Let the spectrum of the source be repre-

sented by S0( v ) and the spectrum after n scatterings by Sn( v ). Let the corres-

ponding z-numbers be denoted by zn , n 5 0, 1, 2, . . . . If the central frequency
of Sn( v ) is denoted by v n , n 5 O, 1, 2, . . . , then by definition,

zn 1 1 5
v n 2 v n 1 1

v n 1 1

, n 5 0, 1, 2, . . .

or

v n

v n 1 1

5 1 1 zn 1 1, n 5 0, 1, 2, . . . (11)

Let us find the z-number if the total number of scatterings is N. Taking the

product over n from n 5 0 to n 5 N 2 1, we get

v 0

v N

5 (1 1 z1)(1 1 z2) ? ? ? (1 1 zN) (12)

But the left-hand side is nothing but the ratio of the source frequency and
the final (i.e., after N scatterings) frequency. Hence, by definition, the final

z-number zf is given by

v 0

v N

5 1 1 zf

or

zf 5 (1 1 z1)(1 1 z2) ? ? ? (1 1 zN) 2 1 (13)

This formula is equally valid for z-numbers which are not caused by scattering

processes, i.e., (13) holds for z-numbers due to the Doppler effect, gravita-

tional effect, and others, and thus it is a general rule for combining successive

z-numbers.
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3.1. Particular Case.

If we take each zi 5 z, then the above equation reduces to

zf 5 (1 1 z)N 2 1 (14)

It therefore asserts that for redshifts, i.e., for z . 0, zf ® ` as N ® ` . As
light travels light-years to reach the earth, it is reasonable to assume that N
depends on the distance between the earth and the source and obviously this

distance is less than the measured distance obtained from present-day theory.

If this relation is linear, i.e., N /D is constant, k say, which is to be measured

in the unit per light-year, the above equation gives a possible estimate of D
as follows:

D 5
1

k

ln(1 1 zscat)

ln(1 1 z)

As there is no distinction between zscat and the observed z-number, i.e.,

as we cannot distinguish the contributions in z due to different causes, we
should try to find the relationship of D with the observed z-number. However,

an upper bound of the contribution due to multiple scattering can be formu-

lated in terms of the maximum total angle of scattering, as we have done

previously, the maximum being taken in the sense that the image remains

stellar below this limit. If we denote by zother the z-number due to nonscattering
processes, we get

1 1 zobserved 5 (1 1 zother)(1 1 zscat)

Combining these results, we can get a correction for D.

3.2. Two Main Results Concerning Multiple Scattering

1. Since

(1 1 zf) 5 (1 1 z1)(1 1 z2)(1 1 z3) ? ? ? (1 1 zN)

where the z 8i and zf are positive in the case of redshift,

zf . z1 1 z2 1 z3 1 ¼ 1 zN

and so zf . zi " i 5 1, 2, . . . ,N.

Hence multiple scattering produces greater redshift than does single
scattering. Figure 1 shows an example through the z±u relation, comparing

two shifts, one due to single scattering and the other to multiple scattering.

2. The effect of m scatterings with scattering angle u /m each causes a

shift given by
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Fig. 1. Redshift due to scattering.

1 1 zf (m) 5 (1 1 zm)m

where zf (k) denotes the final z-number after k scatterings each of which
is denoted by zk corresponding to the scattering angle u /k, and u is very

small. Similarly,

1 1 zf (n) 5 (1 1 zn)
n

According to Fig. 1 (a single curve),

zn . zm if n , m

Assuming (Wolf and Foley, 1989) a linear z±u relation for small u , we get

zf (m) . zf (n) for m . n (15)

It is interesting to note that if the total scattering angle is u , which is very

small, the limiting z-number as the number of scatterings is infinitely large

is given by

z 5 e u 2 1 (16)

This follows from
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1 1 1
u
n 2

n

ª e u as n ® `

Therefore, the limiting scattering angle u above which the image will be

blurred gives an upper bound of the scattering contribution in the z-number

and is given by e u 2 1. This poses a restriction on the range of values of z-
number given by Wolf and James (1990), the upper bound being such that
the image will be blurred above this limit.
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